

Action from the First Meeting

Examine programmatic/implementation options of using common/multiple surface and orbiting platforms (e.g., multiple MSL & MTO) to achieve fiscal efficiency while being responsive to a vibrant science strategy.

Specifically address how MSR can capitalize on MSL investment to make MSR more affordable.

Naderi (Lead), Adler, Braun, Dorfman, Lee, McCuistion, Squyers, Theisinger

Impetus for Today's Presentation

Early Results from the MSR Pre- Project

 Core Product Action Item from the Mars Roadmapping Committee

Today's Presentation

Missions Sequence — Built Out of Building Blocks

- Core products considered :
 - 1. A universal EDL
 - 2. MSL line of rovers
 - 3. Static Landers
 - 4. An orbiter platform MRO/MTO derivative

Customer Missions for Core Products

- Customers for core products are assumed to be :
 - The Core strategic missions
 - MSL,
 - MSR,
 - AFL,
 - Deep Drill,
 - Human Precursor Platforms,
 - MTO
 - But not Scouts
 - Too many possibilities
 - Last competition resulted in:
 - An orbiter
 - A lander
 - A airplane
 - Atmospheric sample return sample

- 1. Common Orbiters
- 2. Universal EDL
- 3. Common Static Landers
- 4. Common MSL-class Rovers
- 5. MSL/MSR Commonality
- 6. Potential Mission Scenarios

What you are going to hear

- 1. Orbiters: a great deal of commonality possible
 - Issue: Desire to compete at every opportunity vs going to the the supplier with previous heritage
 - Infrequency of occurrence
- 2. Static Landers: A great deal of commonality possible
 - Same two issues as above
- 3. Rovers: Multiple copies of MSL
 - Issues: mass, planetary protection requirements, cost
- 4. EDL: Possibility for a universal EDL but we need to overcome several challenges
 - In MER (actual) and MSL (estimate) ~ 40% of the cost of the flight system is in EDL

Challenges of EDL

- We are now getting into applications that need to land up to 7 times more useful mass (compared to ~180kg of Spirit and Opportunity) on Mars
- Atmospheric challenges
- Altitude: we have only landed at -1Km or below so far
 - Want to land at higher altitudes with large mass
- With all of the above, we are well over the Viking heritage capability EDL
- But all is not lost

Two Classes of Orbiter

Telecom S/C

- High Orbit (~ 4,000 km)
- Example MTO
- High gain antenna body fixed and Earth pointed

Science S/C

- Low Orbit (~ 400 km)
- Example MRO
- High gain antenna & S/A gimballed
- Science Instrument panel and Mars relay antenna nadir pointed

Potential Applications

- Candidate Science Missions
 - Methane mapping orbiter
 - SAR mapping orbiter
- Candidate Telecom Missions
 - First MTO + technology demonstration of Laser Com, RAN
 - Second MTO + Scout Opportunity
 - 120 kg carried into high orbit or
 - 300 kg payload released prior to MOI
- MSR Orbiters

High degree of commonality at the subsystem level between all these orbiters possible

- In general use of a common platform gains fiscal savings but eliminates another desire of the NASA/OMB which is competition at every opportunity
- We used open competition RFP to solicit MTO
 - RFP released Fall 2004
 - Launch in 2009
- There is a current Mars science orbiter (MRO) wrapping up development for launch in August 2005
- It is inevitable that the MRO contractor would use commonality of subsystem to gain competitive advantage

Past Mars Landings

Mars above 2.5 km in Black

• Lines at ±50°, ±60° latitude

MOLA Topography ±90° Lat, 180° to -180°W Lon

Mars above 2.0 km in Black

• Lines at ±50°, ±60° latitude

MOLA Topography ±90° Lat, 180° to -180°W Lon

Mars above 1.5 km in Black

- Black area is topography > 1.5 km
- Lines at ±50°, ±60° latitude

MOLA Topography ±90° Lat, 180° to -180°W Lon

Mars above 1.0 km in Black

Black area is topography > 1.0 km Lines/ats±60° latitude

Mars above 0 km in Black

Black area is topography > 0.0 km Lines/at5±60° latitude

Mars above -1.0 km in Black

Black area is topography > -1.0 km Lines/at ±60° latitude

Mars above -2.0 km in Black

Black area is topography > -2.0 km Lines/at ±60° latitude

Note: Top of N. polar cap is shaded

Our Past Performance -- All below -1KM

- So far the highlands have been out of reach.
- What has stopped us from going higher?

Elevation Variation

- The highest landing to-date is Opportunity at Meridiani @ -1 km MOLA.
- We are still 2 km below the flanks of the Highlands.

Topography has bimodal distribution

Skycrane Architecture

- Low density atmosphere
- Dust loading of the atmosphere (or "Tau")
- Seasonal atmospheric variation across opportunities

Atmosphere Density

- Density = 1% of Earth's
- Surface atmosphere of Mars has the same density as the Earth atmosphere at ~ 30km
 - Imagine having to land the Shuttle at 100,000 ft!

What we Know of Dust Storm on Mars

Yellow = Regional Dust Storms
Red = Planet-encircling Dust Storms
Brown = Regional Dust Storms did not occur
Local Dust Storms occur at all seasons

- Dust changes atmospheric density profile
- Roughly 1 in 3 probability of a global dust storm in any given year:
- τ is a measure of dust in atmosphere
 - τ = 3 is global average in a post storm season
 - $-\tau$ >7 has been observed

Effect of Dust in Delivered Mass vs Altitude

— Optimized EDL

Assumptions

- Performance for the 2013 opportunity
- Skycrane architecture, Descent Stage optimized for delivered mass
- Two parachute system used, Viking supersonic and 110 ft. subsonic
- Maximum aeroshell diameter used (5.0 m)

Seasonal impact on Delivered Mass vs Altitude

- Atmosphere Variation
 - The amount of air drops in the winter by 30% (moves to poles)

Effect of Seasonal variation on Delivered Mass vs Altitude

Assumptions

- Performance for the 2013 opportunity
- Skycrane architecture, Descent Stage optimized for delivered mass
- Two parachute system used, Viking supersonic and 110 ft. subsonic
- Maximum aeroshell diameter used (5.0 m)

Effect of Common Design on Lower Mass payloads

- If we were to develop a common EDL system design to encompass future missions mass delivery needs MSR would be the principal driver with ~1300 kg delivered mass
- Missions with lower delivered mass needs will lose altitude performance (compared to optimal design)

2/27/05

"Common" Landing System Impact

- Common EDL designed around 1300kg delivered mass
- For lower masses, this system is less efficient than optimal
- But for large delivered masses, efficiency loss is small compared to environmental factors

32

Milking the Viking Investment

We are still living off the Viking technology investment of nearly 4 decades ago

- Entry Vehicle
 - 70 deg cone shape
 - Diameter driven by launch vehicle faring (5 m is largest available)
 - Lift to Drag Ratio as high as 0.24
- Supersonic Parachute Size
 - 16.15 m (53 feet) diameter is the largest qualified chute from Viking BLDT test program
- Parachute Opening conditions
 - Dynamic pressure limit as high as 800 Pascals
 - Mach 2.2

Breaking out of the Viking Paradigm

- Next Generation Supersonic Parachute
 - Larger parachute deployable at higher Mach numbers
 - End-to-end simulation of EDL shows that the performance gains of 6km in altitude are possible
- Larger launch vehicle fairing and heatshield diameter
 - 6.5 m LV fairing would allow for ~6.0 m aero-shell
 - Performance gains of ~1-2km in altitude possible in conjunction with larger parachute
 - Unknown impact on launch vehicle cost & performance

Altitude Capability w/Improved Parachute

Improvement due to parachute

Delivered Mass (kg)

- Common EDL designed for 1300 kg delivery requirement
- Dust degraded performance assumed (τ = 3.0)
- 2013 opportunity

Orbital Entry Options

- Given the uncertainty of the dust in the atmosphere one possibility is to go into orbit and "ride it out" a la Viking
- Orbit insertion options
 - Propulsive
 - Solar Electric Propulsion
 - Aerocapture

Cost/Benefit Comparison Orbit insertion vs Parachute

Parachute

- Mitigates dust concern
- Significant non-recurring costs to develop parachute (~\$100M)
- Small NRE costs (~\$1M)
- Orbit Insertion
 - Fully mitigates dust concern
 - Increased launch vehicle costs (~\$100M per launch)
 - Increased cruise/insertion stage costs
 - Still need to develop new parachute to improve altitude capability

Parachute is a cost effective solution for increased altitude capability

Opportunities for Static Lander Applications

Human Precursor Technology Test-beds (1-3)

Mass for all applications ~ 1,000 - 1,200 Kg

Alternative Concepts for Mars Static Lander

Platform on Legs

- Potential common elements
 - Mechanical platform and skycrane interface.
 - Avionics and telecom.
 - Dynamic testing with skycrane system (qualification).
 - Planetary protection implementation.

Pallet on Martian Surface

- 600kg
 - 65kg science payload
- 100 watt RTG
- Roving range: 10-20km

Repeat Opportunities for MSL-class Rover

- One or two of each of the following
 - MSL in 2009 or 2011
 - AFL mid-next decade
 - Will require more payload capacity (100kg?)
 - Possibly the mobile element of MSR

Planetary Protection

- MER was Category IV A
- MSL can be Category IV C
- MSR & AFL will likely need to be Category IV B
 - Same as Viking
- How much will planetary protection classification play into design and development of a common rover?
- Additional cost for Category IV B relative to Category IV C will be very significant

Anatomy of an MSR Mission

- Two identical landers each carrying
 - a platform to land on Mars,
 - a rover to get samples and bring back to the landed platform
 - a bowling ball size container to house the collected samples
 - a Mars Ascent Vehicle (MAV) to launch the sample canister into low Mars orbit
- One orbiter to capture the sample from Mars orbit and deposit into a Earth return vehicle

Range of MSR Rover Alternatives

Groundbreaking (no rover)

Single Entry Vehicle
Lander, MAV,
Fetch Rover

Dual Entry Vehicles
Lander/MAV &
MSL Reuse

All-Inclusive Rover

Delivered Mass: 1000 kg

Delivered Mass: 1300 kg

Lander/MAV Delivered Mass: 1000 kg Rover Mass 700kg Delivered Mass: 1300 kg

MER Copy

MER Class

Rover Mass: ~200 kg

MSL Reuse

Why Not Build to Print MER Rover?

- Parts obsolescence will require some changes
 - Cassini ASIC
 - RAD 6K computer
- Design optimized to the Athena payload, and a different payload will require some design changes
 - Design accommodates 5 kg payload mass and 15 kg payload support
 - Arm accommodates 4 instruments at ~ 1.5 kg
 - Mast is fore-optics for Thermal Emission Spectrometer which is contained inside the rover body
- Rover mechanical design is highly integrated extremely brittle given even small changes in "payload" (science, avionics, power, telecom)
 - Volume margin is minimal

2/27/05

48

Highly Optimized for the Volume Available

Range of MSR Rover Alternatives

Groundbreaking (no rover)

Single Entry Vehicle
Lander, MAV,
Fetch Rover

Dual Entry Vehicles
Lander/MAV &
MSL Reuse

All-Inclusive Rover

Delivered Mass: 1300 kg

Delivered Mass: 1000 kg

Delivered Mass: 1300 kg

py MER Class

Rover Mass: ~200 kg

MSL Reuse Lander/MAV Delivered Mass: 1000 kg Rover Mass 700kg

Altitude Capability w/Improved Parachute

Improvement due to parachute

Delivered Mass (kg)

- Common EDL designed for 1300 kg delivery requirement
- Dust degraded performance assumed (τ = 3.0)
- 2013 opportunity

Range of MSR Rover Alternatives

Groundbreaking (no rover)

Single Entry Vehicle
Lander, MAV,
Fetch Rover

Dual Entry Vehicles
Lander/MAV &
MSL Reuse

Rover Mass 700kg

Lander/MAV Delivered Delivered Mass: 1000 kg

Delivered Mass: 1300 kg

All-Inclusive

Rover

Delivered Mass: 1000 kg

Delivered Mass: 1300 kg

Mass: 1300 kg

Rover Options

- MER Class (200 kg)
 - Payload mass capability: 20-30 kg
 - Solar powered, lifetime and latitude constrained
 - Substantial non-recurring engineering required
 - Design can be optimized for PP and organic cleanliness issues
- MSL Reuse (600kg)
 - Payload mass capability: 65 kg
 - RTG powered, full latitude and lifetime access
 - NRE limited to payload changes
 - Impact of PP and organic cleanliness requirements is TBD
- All-Inclusive Rover (1,300 kg)
 - Science payload mass capability: 65 kg
 - Capable of carrying MAV & MAV launch equipment
 - RTG powered, full latitude and lifetime access
 - Design can be optimized for PP and organic cleanliness issues

- Orbiter
 - Utilize elements of common orbiter
- Cruise/EDL system
 - Use common EDL system
- Lander
 - Common static lander (possibly same as MHP first flight)
- Mars Ascent Vehicle
 - MSR developed
- Earth Entry Vehicle
 - MSR developed
- Rover
 - Several options

MSR Conclusions

- Groundbreaking MSR is lowest cost option, but is not acceptable to science
- Reusing MSL rover for MSR requires more costly dual entry vehicle architecture
- Single Entry Fetch Rover and All-Inclusive rover are viable
 - Fetch rover capabilities needs to be assessed by science community
 - Need cost trade between All-Inclusive rover & common lander development
- MSL and all MSR options can make use of common EDL system
 - Commonality benefits depends upon design stability & discipline
 - Common system design will mature through first several flights
 - Near term missions should assume substantial EDL system engineering & validation efforts despite commonality

Commonality Considerations

- Future Mars robotic missions can make use of common elements
 - EDL
 - Orbiter
 - Lander
- Potential commonality for rovers
 - Commonality between MSL & MSR rovers exists, but might be limited
- Benefits of commonality depend on program architecture and frequency of reuse
- Development of new parachute system critical to future Mars robotic program

Why Not Reuse MER Airbag EDL Again?

- MER was a ballistic (rather than guided) entry
 - With zero delivery error at entry, landing ellipse major axis ~ 60 70 km, minor axis ~10 km (99%)
 - Expected 2009-2016 approach nav errors of few km (99%) should only increase this by 10 km or so
 - Increase in dust tau associated with dust storms reduces atmospheric density, but also increases atmospheric density uncertainty, which increases landing error ellipse size
- MER EDL altitude capability below –1.3 km MOLA for 2003 atmospheric conditions

Parachute Development Approach

- Start rapid development program for improved supersonic parachute
 - Complete supersonic qualification in time for MSL '09 launch
 - Likely to be completed ~ 1 year prior to launch
 - Need near-term decision and aggressive start up
- Near term activities include subscale wind tunnel tests to down select parachute technology, development of balloon launch and test article infrastructure, and selection of parachute subcontractor
 - Aim for first development flight test ~ 18 months
 - Provide opportunity for three test/retest opportunities
- Qualify parachute design for subsonic conditions to provide backup for supersonic qualification problems

MER was 180kg why is MSL 600kg?

- MER to MSL Equip Growth (240kg):
 - Power: ~30 kg
 - Thermal ~20 kg
 - Avionics ~10 kg
 - Sci instruments ~40 kg
 - Sci accommodation ~20 kg

Sub-total + 120kg

- Structure/mobility "wrap mass" ~ 120kg
- MSL Mass
 - By analogy to MER = 180+240 = 420kg
 - CBE: 410 kg
 - Structure/Mobility: 200 kg CBE
 - Equipment: 210 kg CBE
 - Mass + margin = 410Kg * 1.43 = 586Kg
 - Project allocation = 600 kg

Analysis of flight Rovers indicates that the mass of the structure and mobility consumes approximately 45%-50% of the total mass